An Improved Semidefinite Programming Hierarchy for Testing Entanglement
نویسندگان
چکیده
منابع مشابه
An improved semidefinite programming hierarchy for testing entanglement
We present a stronger version of the Doherty-Parrilo-Spedalieri (DPS) hierarchy of approximations for the set of separable states. Unlike DPS, our hierarchy converges exactly at a finite number of rounds for any fixed input dimension. This yields an algorithm for separability testing which is singly exponential in dimension and polylogarithmic in accuracy. Our analysis makes use of tools from a...
متن کاملAn improved semidefinite programming relaxation for the satisfiability problem
The satisfiability (SAT) problem is a central problem in mathematical logic, computing theory, and artificial intelligence. An instance of SAT is specified by a set of boolean variables and a propositional formula in conjunctive normal form. Given such an instance, the SAT problem asks whether there is a truth assignment to the variables such that the formula is satisfied. It is well known that...
متن کاملA semidefinite programming hierarchy for packing problems in discrete geometry
Packing problems in discrete geometry can be modeled as finding independent sets in infinite graphs where one is interested in independent sets which are as large as possible. For finite graphs one popular way to compute upper bounds for the maximal size of an independent set is to use Lasserre’s semidefinite programming hierarchy. We generalize this approach to infinite graphs. For this we int...
متن کاملA Semidefinite Hierarchy for Disjointly Constrained Multilinear Programming
Disjointly constrained multilinear programming concerns the problem of maximizing a multilinear function on the product of finitely many disjoint polyhedra. While maximizing a linear function on a polytope (linear programming) is known to be solvable in polynomial time, even bilinear programming is NP-hard. Based on a reformulation of the problem in terms of sum-of-squares polynomials, we study...
متن کاملSemidefinite programming — an introduction
Interior point methods can be extended to a number of cones (self-dual homogeneous cones) • Rn (linear programming) • vectorized symmetric matrices over real numbers (semidefinite programming) • vectorized Hermitian matrices over complex numbers • vectorized Hermitian matrices over quaternions • vectorized Hermitian 3×3 matrices over octonions Grötschel, Lovász and Schrijver [3]: semidefinite p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications in Mathematical Physics
سال: 2017
ISSN: 0010-3616,1432-0916
DOI: 10.1007/s00220-017-2859-0